Networking

Lecture 8

Copyright © Politehnica Bucharest and Wyliodrin SRL 2025, licensed under CC BY-SA 4.0.

https://pmrust.pages.upb.ro/
https://www.wyliodrin.com/

Networking

= OSI Network Stack
= Wi-Fi

= TCP/IP

= Raspberry PiW

= Protocols

OSIN etwork Stack

Open Standard for Intercommunic

Bibliography
for this section

Andrew Tanenbaum, Computer Networks (5th edition)

= Chapter 1 - Introduction
= Subchapter 1.1 - Uses of Computer Networks
= Subchapter 1.2 - Network Hardware
= Subchapter 1.3 - Network Software
= Subchapter 1.4.1 - The OSI Reference Model

Standardized Interfaces

7 layers, each one communicates with its counterpart

Physical

Physical

7. Application }(--){ Application
6. Presentation] [Presentation
5. Session] __ [Session
H ':"'/'/',""""""""""",', """"""" N
4. Transport }(-' ' f\:@ Router @a Router !){ Transport
) Application Application \

3. Network - Presentation Presentation Network
(Session Session S
2. Data Link Transport Transport Data Link
Network Network
1 Physical Data Link Data Link

Physical

= L1 hardware, sends and receives data on the physical media

= L2 hardware and driver sends and receives data from a device that it is directly connected to

» L3 driver sends and receives data from devices not directly connected to using L2 from device to device
= L4 driver connects the applications to the networking stack

= L5/L6 not used

» L7 is the application

Wi-F1

Wireless Network

Bibliography
for this section

Andrew Tanenbaum, Computer Networks (5th edition)

= Chapter 1 - Introduction
= Subchapter 1.5.3 - Wireless LANs: 802.11

Wi-Fi

» Wireless Network

= [.2 (Data Link) Protocol

= Devices
. AP - Access Point

= gcts as a hub or switch
» handles authentication

= Device - The device that connects to the

network

= Frequencies
= 2.4 GHz
= 5GHz

Wireless Network Connection

security

Open - everyone receives all the communication

WEP - all data is encrypted with the same key, everyone who knows the keys can read the data
WPA 1/2/3 (Personal) - each device has a different encryption key shared with the AP

= the device authenticates with the AP by using the network passkey

= the device and the AP exchange a symmetric encryption key

WPA 1/2/3 Enterprise - each device has a different encryption key shared with the AP

= the AP provides a certificate to the device proving its authenticity

= the device authenticates using username and password or a private key

= the device and the AP exchange a symmetric encryption key

Integrated Network Device

the network device is integrated into the MCU

a radio peripheral

= knows how to emit and receive in 2.4 and 5 GHz

= is controlled by software

= can generate signals for Wi-Fi, BLE, 802.15.4, 6LoPAN, Thread

it knows how to transmit and receive buffers (LI)

some devices know L2

Processor

——————
Registers

Processing

add

J

sub

]

and

]

Application

Transport
Network
Data Link

@& 0)

&

[RX Buffer][TX Buffer J

J

Discrete Network Device

the network device is connected into the MCU

the MCU is connected to an external Wi-Fi/BLE device

transport over UART, SPI or 12C

most devices knows

= [3-provides socket

m |4 -provides TCP/UDP sockets
= [7-provides application functions (usually HTTP and MQTT)

Processor

Registers

Application

Processing

add

/
\

()
UART Application
; SPI Presentation
Session
I2C Transport
Network
Data Link
@)
[RX Buffer] [TX Buffer U
S &

TCP/IP Stack

Transport Control Protocol over Internet Protocol

Bibliography
for this section

Andrew Tanenbaum, Computer networks (5th edition)

= Chapter 1 - Introduction
= Subchapter 1.4.2 - The TCP/IP Reference Model

TCP/IP Stack

Application A
L {send(IP, PORYT, data) o
receive (&IP, &PORT, data) 2
o Transport é
3 \ {send(lP, data)
receive (&IP, &data)
Network
send(MAC, data)
()| receive (&MAC, &data)
Data Link
send(data)
receive (&data)
Physical

*the initial TCP/IP stack did not make any difference between the Physical and the Data Link layers

Data Link Layer

= very similar for Ethernet and Wi-Fi (HDLC)
= uses Media Access Control (MAC) addresses

= sends and receives frames from other devices directly connected to the same network

N
Destination
[Source MAC I MAC Payload

J

CRC

Network Layer

Internet Protocol

uses Internet Protocol (IP) addresses
= [Pv4-32 bits

= JPv6-128 bits

sends and receives packets from other devices remotely

Network Layer
N

-
N
Source MAC estinzlicn Source IP Destination IP
MAC
v,

Payload

Transport Layer

Two protocols

= Transport Control Protocol (TCP) - stream of data, makes sure it gets to the destination
= User Datagram Protocol (UDP) - fire and forget, best effort do deliver the packet

uses Ports to identify the destination and source application

sends and receives packets

Network Layer

A
4 A

DeslggztlonI SEQ* I Payload ICRCJ CRC

N J
Y

Transport Layer

Source MAC Deizlz?;tlon [Source IP IDestination IP][Source Port

Raspberry Pi Pico W

Bibliography
for this section

Andrew Tanenbaum, Computer networks (5th edition)

= Chapter 7 - Application Layer
= Subchapter 7.1 - DNS - Domain Name System

Raspberry Pi Pico W

uses a discrete Wi-Fi chip

Wi-Fi and BLE provided by CYW43439 made by
Infineon

connected over SPI/PI0

Wi-Fi4 (802.11n), 2.4 GHz

= WPA3

= SoftAP (4 clients)

= Device

BLE 5.2

= Central

= Peripheral

= Bluetooth Classic

Provides L2 - allows sending of Ethernet (MAC)

frames

Application

Y

Transport

Y

A

Network

I\

Data Link

Physical

A

https://www.infineon.com/cms/en/product/wireless-connectivity/airoc-wi-fi-plus-bluetooth-combos/wi-fi-4-802.11n/cyw43439/

Tasks

tasks that run when using Wi-Fi

/

. A5 o Network Empty Task | ... Wait for
CYW43439 { Main Wi-Fi DrlverJ [Stack J [Slot] Event
&] '
v ; :
Waits for
NVIC 4)[ISR Event? Execute }

CYW43439 API

the embassy driver

1. Load the firmware into the .data section.

let
let

fw = include_bytes!("./cyw43439 firmware/43439A0.bin");
clm = include_bytes!("./cyw43439 firmware/43439A0 clm.bin");

2. Use PIOO0 as SPI device

bind_interrupts!(struct Irqgs {

3

let
let
let
let

PIOO®_TRQ_© => InterruptHandler<PIO00>;

pwr = Output::new(p.PIN_23, Level::Low);
cs = Output: :new(p.PIN_25, Level::High);
mut pio = Pio::new(p.PI0O, Irqgs);

spi = PioSpi: :new(

&mut pio.common, pio.sm@, pio.irq@,

cs, p.PIN_24, p.PIN_29, p.DMA_CHeO

Interrupt Vector
.vector_table

Code and Data

A

/ Flash Storage A
0x000 | RP2040 Boot Loader
.boot_loader
[0x100 Initial Stack Address
[0x104 Reset Handler
[0x108 NMI Handler
[0x10c HardFault Handler
[0x12c [SVC Handler
[0x138 [PendSV
0x13c SysTick Handler
0x140 ISR O
0x144 ISR 1
Ox1bc ISR 31
0x1c0
(_ 4-
Code
.text <
le-
Data
.rodata & .data
[CYW43439 Firmware J
N J

|) U [U W, " —
' '

|
Jump
to
main '
' Jump to
panic
handler

! Jump when !
i IRQ 1 fires |

* drawing is not at scale, code and data are significantly greater than the interrupt vector

CYW43439 API

the embassy driver

3. Write a task for the Wi-Fi driver

#[embassy_executor: :task]|
async fn wifi_task(runner: cyw43::Runner<'static, Output<'static>, PioSpi<'static, PI00, @, DMA_CHO>>) -> | {
runner.run().await

4. Start the driver

static STATE: StaticCell<cyw43::State> = StaticCell::new();
let state = STATE.init(cyw43::State::new());
let (_net_device, mut control, runner) = cyw43::new(state, pwr, spi, fw).await;

AW N PR

unwrap! (spawner.spawn(wifi_task(runner)));

5. Init the device

control.init(clm).await;
control
.set_power_management(PowerManagementMode: : PowerSave)

AW N PR

.await;

Flash the firmware

write the firmware to the wifi device

The first action of the wifi task is to write the firmware
from .data to the CY43439 chip.

#[embassy_executor: :task]
async fn wifi_ task(

) > 1 {

runner.run().await

Interrupt Vector

N

.vector_table

Code and Data

N

Flash Storage \
0x000 | RP2040 Boot Loader
.boot_loader
0x100 Initial Stack Address J
0x104 Reset Handler }— =
0x108 NMI Handler J
0x10c HardFault Handler } oo
[Ox12c I SVC Handler J
[0x138 I PendSV J
0x13c SysTick Handler
0x140 ISR O
0x144 ISR1 }»
Ox1bc ISR 31]
Ox1cO
(_ <
Code
text <
(€
Data
.rodata & .data
{ CYW43439 Firmware }--

)

Jump to
panic
handler

! Jump when
E IRQ 1 fires |

SPI

* drawing is not at scale, code and data are significantly greater than the interrupt vector

CYW43439
Application
Presentation
Session
Transport
Network
Data Link

D)

| RxBuffer | | TxBuffer |

Wi-Fi AP Mode

Start an AP and allow other devices to connect.

Open Network (not a very good idea)

= network SSID
= channel number

control.start_ap_open('Network SSID", 5).await;

WPA network

= network SSID
= WPA password

= channel number

control.start_ap_wpa2('Network SSID", "WPA password",

5).await;

Wi-Fi Device Mode

Start an device and connect to a Wi-Fi network

Open Network (not a very good idea)

= petwork SSID

control .join_open('network SSID").await;
WPA network

= petwork SSID

= network password

match control.join_wpa2('network ssid", "network password').await {
Ok(_) => break,
Err(err) => {
info!("join failed with status={}", err.status);

3

Embassy Net

a smol TCP/IP stack

= uses smoltcp, embedded (no_std) TCP/IP stack

written in Rust
= [3: IPv4, IPv6, IGMPv4 (ping), 6LOWPAN
=]4: TCPand UDP
= L7: DHCPv4 and DNS

Application JDHCPV4/DNS

Transport TCP/UDP

Network |PV4/1PV6 /
\ IGMP____
fceeeeeeo..o Patalbink () -

Physical vcd)g

https://docs.rs/smoltcp/latest/smoltcp/

Embassy Net API

over smoltcp

1. Set how to obtain an IP address
= self assigned
= DHCP

2. Start the network stack

3. Use sockets to communicate

DHCP

Dynamic Host Control Protocol

Device AP DHCP

Connect (SSID, password)

Connected (encryption_key exchange)

DHCP_ACCEPT

Device AP DHCP

Obtain a network address

self assigned or obtain one from a DHCP server

Self assigned
1 let config = embassy_net::Config::ipv4_static(embassy_net::StaticConfigV4 {
2 address: Ipv4Cidr::new(Ipv4Address::new(192, 168, 69, 2), 24),
3 dns_servers: vec![Ipv4Address::new(8, 8, 8, 8), Ipv4Address::new(1l, 1, 1, 1)],
4 gateway: Some(Ipv4Address::new(192, 168, 69, 1)),
5 3

Dynamic Host Control Protocol (DHCP)

O 00 N O U

// Wait for DHCP

info!("waiting for DHCP...");

while !stack.is_config_up() {
Timer::after millis(100).await;

Start the network stack

1. Write a network task
#[embassy_executor: :task]|
async fn net_task(stack: &'static Stack<cyw43::NetDriver<'static>>) -> | {

stack.run().await

3

2. Start the network stack

14 unwrap! (spawner.spawn(net_task(stack)));

Query an IP address using DNS

IP address for a domain

sockets use IP addresses

to talk to a server, the IP of the server has to be obtained

1
2
3
4
5

let dns = DnsSocket: :new(stack);

match dns.get_host_by_name('"www.example.com'", AddrType::IPv4) {
Ok(ip) => info!("Ip is {:?}", ip),
Err(e) => warn!("failed to retrieve address {:?}'", e)

TCP Server Socket

listening for one single connection

smoltcp can only listen and accept one client

14 info!("Received connection from {:?}", socket.remote_endpoint());

TCP Client Socket

COI’lIlECtil’lg to a server

14 info!("Connected to {:?}", socket.remote_endpoint());

Read from a TCP Socket

read bytes

15 // display bytes as a UTF-8 string
16 info!("rxd {}", from_utf8(&buf[..n]).unwrap());

Write to a TCP Socket

write bytes

5

9
10
11
12
13

match socket.write_all(&buf[..n]).await {

Err(e) => {
warn!("write error: {:?}", e);
break;

Listen for UDP Packets

19
20
21
22
23

match socket.recv_from(&mut buf) {
Ok((n, endpoint)) => {

3

info!("Received from {:?}: {:?}", endpoint, buf[..n]);

Send UDP Packets

12
13

17
18
19
20

info!("Sending to UDP 1.2.3.5:1234...");
match socket.send_to(&buf, IpEndpoint::new(IpAddress::v4(1,2,3,5), 1234)) {

Err(e) => {
warn!("send error: {:?}", e);

Protocols

Libraries

that provide protocols

= MQTT - MQ Telemetry Transport

= publish/subscribe

= minimq

= CoAP - Constrained Application Protocol

= simplified binary HTTP

= coap lite

https://en.wikipedia.org/wiki/MQTT
https://docs.rs/minimq/latest/minimq/
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://docs.rs/coap-lite/latest/coap_lite/

Conclusion

we talked about

= OSI Network Stack
= Wi-Fi

= TCP/IP

= Raspberry PiW

= Protocols

